Confined Acoustic Phonons in Colloidal Nanorod Heterostructures Investigated by Nonresonant Raman Spectroscopy and Finite Elements Simulations.

نویسندگان

  • Mario Miscuglio
  • Miao-Ling Lin
  • Francesco Di Stasio
  • Ping-Heng Tan
  • Roman Krahne
چکیده

Lattice vibrational modes in cadmium chalcogenide nanocrystals (NCs) have a strong impact on the carrier dynamics of excitons in such confined systems and on the optical properties of these nanomaterials. A prominent material for light emitting applications are CdSe/CdS core-shell dot-in-rods. Here we present a detailed investigation of the acoustic phonon modes in such dot-in-rods by nonresonant Raman spectroscopy with laser excitation energy lower than their bandgap. With high signal-to-noise ratio in the frequency range from 5-50 cm-1, we reveal distinct Raman bands that can be related to confined extensional and radial-breathing modes (RBM). Comparison of the experimental results with finite elements simulation and analytical analysis gives detailed insight into the localized nature of the acoustic vibration modes and their resonant frequencies. In particular, the RBM of dot-in-rods cannot be understood by an oscillation of a CdSe sphere embedded in a CdS rod matrix. Instead, the dot-in-rod architecture leads to a reduction of the sound velocity in the core region of the rod, which results in a redshift of the rod RBM frequency and localization of the phonon induced strain in vicinity of the core where optical transitions occur. Such localized effects potentially can be exploited as a tool to tune exciton-phonon coupling in nanocrystal heterostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-quantized oscillations of the electron mobility limited by the optical and confined acoustic phonons in the nanoscale heterostructures

The authors theoretically investigated the electron mobility in the nanometer thickness AlN/GaN/AlN heterostructures limited by the polar optical and confined acoustic phonons. The proposed model accurately takes into account dispersion of the optical and acoustic phonons in such heterostructures as well as inelasticity of the electron scattering on both optical and acoustic phonons. It has bee...

متن کامل

Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries

It is shown that a finite acoustic mismatch between structure and barrier materials in low-dimensional structures leads to the acoustic phonon confinement, which in its turn brings about a corresponding decrease of the phonon group velocity and modification of the phonon density of states. These factors contribute to the reduction of the in-plane lattice thermal conductivity, thus allowing one ...

متن کامل

Direct observation of low frequency confined acoustic phonons in silver nanoparticles: Terahertz time domain spectroscopy.

Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly(vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness...

متن کامل

Chemical analysis of acoustically levitated drops by Raman spectroscopy

An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out s...

متن کامل

Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy

Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 2016